State-dependent and site-directed photodynamic transformation of HCN2 channel by singlet oxygen
نویسندگان
چکیده
Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level.
منابع مشابه
Photosensitization of coronene–purine hybrids for photodynamic therapy
Photosensitization properties of coronene-purine (Cor-P) hybrids for photodynamic therapy (PDT) have been investigated in this work. Eight hybrid Cor-P models have been designed by the additional of adenine (A) and guanine (G) nucleobase to Cor species. The evaluated absorption and emission energies indicated that the singular models are not good at all for PDT process whereas their hybrid mode...
متن کاملOptical Monitoring of the Generation of Singlet Oxygen during Photodynamic Treatment of Tumors
Research at APL has been directed at understanding energy transfer events taking place after laser excitation of photosensitive compounds in condensed media. In particular, optical means have been developed for the detection of electronically excited molecular oxygen (singlet oxygen) resulting from a favored energy transfer from the sensitizer triplet state. Oxygen excited in this manner is tho...
متن کاملNiflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.
Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electr...
متن کاملPhotodynamic Therapy: Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency (Adv. Sci. 7/2017)
متن کامل
A singlet oxygen monitor as an in vivo photodynamic therapy dosimeter
In this paper we describe the development and testing of instruments to measure singlet molecular oxygen produced by the photodynamic process. Singlet oxygen is an active species in photodynamic therapy, and we are developing two instruments for PDT researchers with the goal of a real-time dosimeter for singlet oxygen. We discuss both an ultrasensitive point sensor, and an imaging system that p...
متن کامل